
FatHat.org

Programming languages

FatHat.org

What We will learn

Introduction to Programming

Algorithms

Common building blocks of languages

Handling errors

Memory Management

How programs are executed (run)

FatHat.org

Programming: ?
Programming is the art of making hardware do things, by writing instructions for a device to act upon.
While programming we often express these instructions in the form of algorithms. But it goes beyond
algorithms, including control, input, output, data collection and distribution. In today’s world Every digital
device on the planet has some form of software embedded in it, i.e. someone wrote a program to enable
that device to function.

FatHat.org

Programming: Languages

In the world of computing and specifically software development there are a multitude of different programming
languages.

Whilst programming languages often share similar attributes in terms of how you write code many of them are
designed for specific purposes.

To better understand the wide range of languages available visit:

https://codedocs.org/what-is/list-of-programming-languages-

In this course we will concentrate on the fundamental structure of the kind of programming languages that we
use for modern development purposes. All of these languages share common features.

Before we get into the languages themselves we should look at what constitutes writing a program.

https://codedocs.org/what-is/list-of-programming-languages-

FatHat.org

Programming: Language paradigms

There are numerous programming languages - most of which fit into one of or more of the following
design paradigms.

● Imperative / procedural
○ Algorithms are as a hierarchy of tasks (procedures) that operate on data
○ Examples: Javascript, Fortran, Cobol, Basic, C, Pascal, Ada

● Functional
○ Computation is expressed in terms of the evaluation of functions
○ Lisp, Scheme, ML, CaML, Javascript, Scala

● Logic / declarative
○ A program consists of a set of facts and rules about objects, and a way to ask questions about objects and their

relationships
○ Prolog

● Object–oriented
○ Computation is performed by a set of interacting objects
○ C++, Java, Python, Smalltalk, Simula, Ada, Javascript

These are general views and whilst languages like Prolog just doesn’t fit into the object oriented category, Python is
object-oriented, procedural and functional, i.e. Multi-paradigm. And Javascript is also Multi-paradigm: event-driven,
functional, imperative, object-oriented. Above are just a few of the languages that fit into these paradigms.

FatHat.org

AlgorithmS
The art of making code meaningful

FatHat.org

Algorithms
The term algorithm comes from the name of Iranian mathematician Muḥammad ibn Mūsā al-Khwārizmī who is
described as the father of algebra.

Algorithms are at the heart of software development and programming languages. An Algorithm is a detailed
sequence of actions to accomplish a specific task. In short an algorithm is a way of producing some output from
some input. The source of that input can be anything from a human, a data pipeline, even a sensor..

ALgorithm

Bake a cake

Inputs OUTPUT

FatHat.org

Algorithms: bake a cake

Preheat oven
Mix sugar and butter and place mix in a bowl
Repeat
 Add eggs to sugar+butter mix and stir
Until batter gets smooth
Mix flour and baking powder place mix in a bowl
Add flour+baking powder mix to other mix
If batter is thin then
 Add more flour
Place mix into oven
Repeat
 Cook and check with stick
Until cake is baked
Put cake on the table

Loops

Store and combine
intermediate results

Returning output

Loops

Order of
operations

An algorithm consists of a sequence of actions.
● Some actions are conditional: only happen if something happens.
● Some actions are performed multiple times in a loop, until something happens.
● Actions may produce and consume intermediate results of other actions.

Conditionals

FatHat.org

Algorithms: Convert temperature

1. Take Celcius degree as Input

2. Multiply input by 9

3. Divide the result by 5

4. Increase the result by 32

5. Output the result as Fahrenheit

FatHat.org

Algorithm: Pseudo code

ConvertToFahrenheit (inputValue) { # 1. Take Celsius degree as Input

 Var result

 result = inputValue * 9 # 2. Multiply input by 9

 result = result / 5 # 3. Divide the result by 5

 result = result + 32 # 4. Increase the result by 32

 return result # 5. Output the result as Fahrenheit

}

Var f = ConvertToFahrenheit(30)

Print(f) # Prints 86

Pseudo-code is a generic notation to express computations. It is not a real programming language, but helps with
expressing the algorithm without following a specific syntax. Therefore, we can express the algorithm without code
Which provides a process of evaluation and iteration on the algorithmic concept. Once happy with the concept we
can commit it to code.

FatHat.org

Programming Languages: share similar constructs

ConvertToFahrenheit (celcius) {

 Var result = celsius * 9

 result = result / 5

 result = result + 32

 return result

}

Var f = ConvertToFahrenheit(30)

Print(f) # Prints 86

 Pseudo-code

function convertToFahrenheit(celcius) {

 var result = celcius * 9;

 result = result / 5;

 result = result + 32;

 return result;

}

var f = convertToFahrenheit(30)

console.log(f) // Prints 86

def convertToFahrenheit(celcius):

 result = celcius * 9

 result = result / 5

 result = result + 32

 return result

f = convertToFahrenheit(30)

print(f) # Prints 86

In this class, we will first explain programming constructs in pseudo-code. Later, you will discover how to write these
constructs in Javascript and Python.

FatHat.org

Programming Languages: Syntax and semantics

Before we start we need to get some basic concepts in our heads.

Programming languages are defined by their syntax and semantics.

● Syntax is Grammar
○ Rules for writing grammatically correct programs.
○ For example: Variable and function definitions, assignment, operations, comments.
○ If the syntax is incorrect, your program will not run.

● Semantics is Meaning
○ Describes the behavior of syntactically correct programs.
○ For example: How conditionals and loops work, how functions are called, calculations are made.
○ If the semantics are incorrect, your program will run, BUT will provide incorrect result and/or errors

Example in English:

“I is reading a newspaper.” → Syntax is incorrect.

“I am reading a mouse.” → Syntax is correct but something is wrong with the semantics .

FatHat.org

Common building blocks

FatHat.org

Literals and variables: representing values

We write code to process data. Data appears in our code in various forms. We refer to data by literals
and variables.

A literal points to a fixed data value, such as the number 1024. Whenever we put 1024 in code, it always
points to the same number.

On the other hand, a variable (as it says “vary-able”) points to different values as the code is running.
When we mention a variable in some expression at a point in code, we may be referring to a different
value depending on what was assigned to that variable.

Let’s go over what literals and variables are.

FatHat.org

Integer: 1, 2, 256, -100

Hexadecimal: 0x12F

Float: 4.32, 5.4, 4.0

String: “I love Fethiye”

Boolean: true, false

Object: {‘color’: ‘red’}

Literals: Fixed values

Literals are fixed values of varying types. A literal value does not change. In programming we often
refer to these as constants. The value is constant it literally never changes.

FatHat.org

Variables: Memory slots to contain values

Variables are containers that store literal values. In some languages, a variable has a fixed type, i.e. a
variable when assigned as an integer or a string can only contain a literal of the same type it is declared with.

In other languages, variable types are dynamic, i.e. you can assign different types such as integers and
strings to the same variable but not at the same time.

 name
“Tayfun”

 is_weather_cold
true

age
40

 height
175.6

FatHat.org

Variables:Static and dynamic

The type of a variable is the type of the value stored in the variable. As previously mentioned, the type

may or may not change depending on the language.

Dynamic

var age; // age is any type

age = 30; // OK

age = “Tayfun”; // OK

Static

int age; // age is of type int/integer

age = 30; // OK

age = “Tayfun”; // Error!

FatHat.org

Variables: declaration and assignment

In some languages to assign a value (put a value in the variable) the variable must first be declared. In other
languages the variable is declared dynamically on assignment.

 Declaration before assignment: Declaration with assignment: Without formal declaration:

 string var firstName string var firstName = “Richard” firstName = “Richard”
 firstName = “Richard”

Notice that the variable in the example above is written in what we call “camel case”. This derives its name
from the hump on a camel but in computer terms equates to declaring names of variables, with the first
character of the first word with a small letter (lowercase) and the subsequent first character of all other
words with a capital letter (Uppercase). Although this is not a fixed rule and won’t break the code, it is in line
with what are called language coding standards or style guides. Other languages use underscores ‘_’ to
separate variable words:

 var first_name = “Richard”

See here for a Javascript style guide https://www.w3schools.com/js/js_conventions.asp . There are different
style guides for different languages. For example, Pep8 for Python https://pep8.org

FatHat.org

Arithmetic: 2 * 2 / 5, year + 10, 100 - age

Comparison: age > 30, year >= 2000, name == “Tayfun”

Logical: (age > 20) and (gender == “male”), stop or fail

Strings: “I love” + birth_city

Variables: Expressions
A variable can be assigned a single value of a specific type or it may also be assigned the result of some form
of expression.

An expression in programming is typically a line of code that resolves into a value. Expressions in their
simplest form are assignments, i.e. ‘x = 10’. Generally though you can think of them as code that uses some
form of operator to deduce a value from a number of literal or variable values. Below are some example
expressions.

FatHat.org

Variables: Assignment examples

 (LHS) = (RHS)

In an assignment, there are two sides, the left side is a variable and the right side is either a literal or an
expression that evaluate to a value. First the value is calculated and then it is stored in the variable.

price = 100 + 50

tax = price * 0.1

price = price + tax

fullName = “Richard” + “Cheesmar”

FatHat.org

Conditional statements

FatHat.org

Conditional statements: If-then-else

Condition

Do x

true false If speed > 90 Then

 reduce speed

End If

Conditional statements are tests on a specific value. The value may be a literal value or inside a variable.
To test a condition of a value we predominantly, but not always, use the ‘If-then’ construct.

Value to test

continue

FatHat.org

If traffic-light is green Then

 Continue

Else If traffic-light is red Then

 Stop

Else if traffic-light is yellow from green Then

 Prepare to stop

Else if traffic-light is yellow from red Then

 Prepare to continue

Else

 Continue driving carefully

End If

Conditional statements: If-then-else

Is green

continue

true false

Traffic Light Color

 Is red

Stop green to
amber

Prepare
to stop

true false

true

red to
amber

false

Prepare
to

continue

true false

continue
Flowchart

pseudo-code

FatHat.org

Conditional statements: switch

Switch traffic-light-color

 Case “RED”:

Stop car

 Case “YELLOW”:

Prepare to stop or move forward

 Case “GREEN”:

Continue driving

End Switch

A switch statement is a conditional statement that is often used instead of if then else statements
depending on the test condition. Switch statements generally test against single values rather than
expressions involving operators.

Larger value sets are more efficient when using a switch statement and switch statements are often more
readable than multiple if-then-else statements. A general rule of thumb is if there are more than 5
conditions use a switch rather than if-then-else.

FatHat.org

Procedures And functions

FatHat.org

Procedures
A procedure is a way of running a list of sequential tasks. Expressions, should not generally occur in
procedures, these are best placed in functions.

A procedure might call a collection of functions that perform calculation via expressions and return the
values back to the procedure, which in turn passes the value to the next function in the sequence. A bit
like a chain of function calls.

displayMaxTempProcedure

 londonTemp = getTemp(“London”)
 parisTemp = getTemp(“Paris”)
 istanbulTemp = getTemp(“Istanbul”)

 maxTemp = getMaxTemp([londonTemp, parisTemp, istanbulTemp])

 print maxTemp

In the above example the getTemp is a function that gets the temperature.

FatHat.org

functionS
Unlike a procedure, a function is a block of code that is used to calculate something and commonly deal
with expressions or some input output. It gets its name from mathematics. Functions can be called from
procedures and other functions. Functions can even call themselves. This is known as recursion.

ConvertToFahrenheit (celcius) {

 Var result = celsius * 9

 result = result / 5

 result = result + 32

 return result

}

Var f1 = ConvertToFahrenheit(30)

Var f2 = ConvertToFahrenheit(60)

Var f3 = ConvertToFahrenheit(90)

Parameter (input)

Return value (output)

Argument (input)

Different return value at
each call

FatHat.org

procedures and functions: Notes

While we have this distinction between procedures and functions, in some languages this distinction is
implicit, i.e. down to the developer to create the appropriate structure. For example, in Javascript, both
procedures and functions are written using the function construct and in Python we use def construct.
And in some functional languages such as OCaml, there are no procedures only functions.

FatHat.org

Input and output
Programming languages provide various methods for input and output. Depending on where the input is
from and where it goes. At the basic level a language will provide constructs for getting input from the user
and printing information to the screen.

The most basic form of user input and output can be done via what is called a console. A console is a
program where you can write code line by line.

Below is are two examples of getting and displaying user input, using Python and Javascript.

Try opening your browser console and running the javascript line by line and see what happens

FatHat.org

Data structures

FatHat.org

Data structures: Arrays and lists

“Toyota” “Audi” “BMW” “Tofas” “Honda” “Opel”

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5

Array length: 5

Cars:

#Declaring an empty array
cars = []

Creating a new array
cars = [“Toyota”, “Audi”, “BMW” “Tofas”, “Honda”, “Opel”]

Reading from array from the second index in the list
mycar = cars[1]

Writing to array at the third position
cars[2] = “Mercedes”

Arrays and lists are containers that can contain any number of items. These items can be single values or
more complex objects. Each item in the list has an index. An Index is the position of the item in that list.
Arrays and lists are zero indexed, this means that the first item is always at position 0, the next at 1 etc. etc. So
with a 3 item list the index positions would be [0, 1, 2] and NOT [1, 2, 3].

Arrays and lists can be declared as empty by using ‘[]’ opening and closing square brackets. Most
programming languages have some form of length function built in that can tell you the number of items in
the list.

FatHat.org

Data structures: Arrays and lists

Programming languages use various methods for working with arrays and lists including adding, deleting and
overwriting. Below you can see the methods for python

You can explore these methods at https://www.w3schools.com/python/python_ref_list.asp
And methods for javascript at https://www.w3schools.com/js/js_array_methods.asp

https://www.w3schools.com/python/python_ref_list.asp

FatHat.org

Data structures: sets

Sets are unordered iterable data structures that can hold multiple types of unique and immutable items in a single
variable. Once an item is in a set it cannot be changed, it is immutable.

Natively, Sets do not maintain an index related to where each item is, so you cannot ask for a Set item at index 3 as
you can with an array or list. However, they allow you to find out if an item is in the set quite efficiently. This is
because sets are hashable.

For an object to be hashable it has to be immutable. A hash is a unique id that is created by applying a hashing
algorithm to an object, be that object a data structure, an individual data item or even a function. As long as it keeps
the same value for as long as the program executes it can be hashed. Hashing allows items in sets to be compared
and referenced quickly. In fact it is the hashing that makes sets very fast when asking if they contain a specific data
item.

set1 = set([1,4,7,9,0,3,6,5,2,8, "Richard", "Tayfun", "Richard", "Tayfun"])

Produces the data structure WITH NO DUPLICATES

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 'Richard', 'Tayfun'}

Defining that same set again may produce the following order

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 'Tayfun', 'Richard'}

"Richard" in set1

FatHat.org

Data structures: sets

Sets are also iterable (can be looped over). It’s important to remember that sets are unordered. Why, is a little
complicated at this point but it is because the values are hashed. Small Sets may maintain an order but adding to the
Set may well disrupt the order of the items. Never rely on a set to have a fixed order.

What are sets used for?

Sets are often used to create a unique set of data from a data structure such as an array or list.

Thus, Sets are useful to create sets of unique data that will not change during the execution of a program.

Another big advantage of using Sets is speed. If you have large settled data sets, then using Sets to access that data
will definitely speed up your program. Sets are often used in data science specifically because the data sets are large
and speed is imperative.

for item in set1:
 print(item)

FatHat.org

Data structures: tuples

Tuples are immutable (cannot be changed) like lists with fixed elements. Not every language has the tuple data type, but you can
simulate it in most languages using lists and objects. However, the data in those are mutable (changeable).

Tuples are indexed just like lists. The first item in a tuple is always 0.
Tuples can store a mix of different objects from single literals to lists and other objects.
Once a tuple value is set you cannot change the value in the tuple.

Python has tuples as one of its four main object types, Lists, tuples, Sets and Dictionaries. Don’t worry about Sets and Dictionaries
yet, we’ll get to those later.

Python uses parentheses ‘()’ brackets to represent tuples:

 Developers = (“richard”, “Tayfun”) is a valid python tuple declaration as is nums = (1,2,3) as is position = (1, “Richard”)

Cool! But why use a tuple instead of a list? The main advantage is that they are indeed immutable. So if you know that a set of
values will not and should not change during the execution of the code then tuples are a great way to safeguard this, especially
when working in a team, where if you used a list some other programmer might well change the data inadvertently.

Also in python, using named tuples you can use the values in tuples as attributes see the code below

from collections import namedtuple

person = namedtuple('Person', 'first_name, last_name')
me = person(first_name="Richard", last_name="Cheesmar")
me.first_name
'Richard'
me.last_name
'Cheesmar'

FatHat.org

Data structures: Maps / dictionaries

“Toyota” “Audi” “BMW” “Tofas” “Honda” “Opel”

Vehicle Prices:

**To access elements of a map/dictionary you generally use ‘[]’ square brackets and in some languages ‘.’ dot notation - see
examples below

Creating a new map
prices = { “Toyota”: 250, “Audi: 300, “BMW”: 500, “Tofas”: 100, “Honda”: 320, “Opel”: 400 }

Reading from a map -
my_cars_price = prices[“Toyota”]

Writing to array
prices[“BMW”] = 600

250 300 500 100 320 400

Keys:

Values:

The data structures map and dictionary in computer science terms are distinct but very similar. In order
not to confuse the situation we are going to describe them in their simplest definitions as containers for
unordered key-value pairs. Where a ‘key’ is some literal identifier associated with another object, simple or
complex, which is the value. Maps and Dictionaries are unordered and mutable. That is they do not
maintain an order of items and every item is changeable.

A common data exchange format called JSON (Javascript
Object Notation), which you’ll use a lot uses the same
structure to send and receive data compatible across any
language that incorporates it, of which there are many.

FatHat.org

Data structures: Maps / dictionaries

Maps and Dictionaries are often used to group related variables into structured objects. Which can be
copied to other objects.

var car = {
 brand = “Toyota”,
 model = “Corolla”,
 mileage = 100000,
 color = “RED”,
 release_date = { day = 10, month = 8, year = 1025 }
}

There are two common methods for accessing values depending
on the language.: For example, to get the car brand we could use:

 car[‘brand’] or car.brand

Javascript allows both whilst Python uses the ‘[]’ notation,
Although you can import some extra code to enable it.

Bear in mind that there are many helper methods for each language
to access and manage map and dictionary keys and values..

// Written in Javascript - try it out in codepen

let car = {
 brand: "Toyota",
 model: "Corrola",
 mileage: 10000,
 color: "red",
 release_date: { day: 10, month: 8, year: 2020 }
};

let carMileage = {};

carMileage[car.brand] = car.mileage;

alert(carMileage['Toyota']);

FatHat.org

Data structures: Iterating over structures

When we use data structures we often need to iterate (run through all the values) and do some processing or
calculations…

Programming languages offer iteration constructs that allow us to do just that. These are known as
‘Loops’, because we generally, but not always, loop over an object one item at a time.

There s one common way of looping over objects. The ‘For Loop’

For Loops often use an explicit variable counter that gets incremented on each loop to a maximum (generally the
number of items in the object) to loop over an object starting normally at the start (0) but not always. Using this method
you can iterate over an object starting at any position you want, even in reverse if necessary. Some languages use a ‘for
each’ or ‘For in’ construct which loops over each item in the object until the end is reached.

FatHat.org

“Toyota” “Audi” “BMW” “Tofas” “Honda” “Opel”

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5

cars:

For each car in cars do

 Print “I love my “ + car

End

“Toyota” “Audi” “BMW” “Tofas” “Honda” “Opel”

prices:

250 300 500 100 320 400

Keys:

Values:

For each (car, price) in prices do

 print “Price of “ + car + “ is “ + price

End

Data structures: Iterating over structures: for loop

FatHat.org

Condition

Do block

true false number = 0

percentage = 10

while number < 20 Do

 print number + percentage

 number = number + 1

End

Iterating using a while loop
While loops are not suitable for object iteration but are very suitable to repeat some process or calculation
until a certain condition is met. Below is a typical while loop.

FatHat.org

Libraries and modules
Libraries of code often called modules or packages are separate code bases (file or sets of files) that are
designed to perform a specific task or set of tasks. For example there maybe a library for manipulating
images, calculating statistics, networking, databases, file operations, math, sending email, anything… that
has already been written by a third party, but we would like to use in our application, in order not to rewrite
what has already been written (especially when it’s complex), and speed up our development time.

Many libraries are included with the language itself as standard, whilst others are external and others we
write ourselves for our applications.

Languages have their own internal frameworks for importing and using libraries. Specific library
management code is used to find and install external libraries.

Generally an application is made up of semantically grouped code (code that handles specific aspects of an
application). We normally separate these in specifically named directories, for example if we develop a
shopping application we might separate out our code into the following modules:

‘customers’, ‘products’, ‘orders’, ‘sales’, ‘shipping’, ‘returns’, ‘accounts’ ‘utility functions’ etc. etc.

Thus, internal modules provide a coherent structure for our application development and maintenance.

FatHat.org

Object oriented programming

FatHat.org

Objects: Introduction

An object is a representation of some entity. It could be
anything we know, a car, an apple a house, a computer, a tree,
literally anything. All of these objects have certain attributes
that make them what they are. For example a car has wheels,
it requires fuel, it moves, it can be driven, it has a color, a brand,
and a top speed plus many other attributes not least an
engine. We could of course have a car without an engine,
which would mean the car is not functional, but it would still be
a car, just without an engine.

In object oriented programming paradigms we use objects to
represent major components of our application. Each object is
individual but belongs to a class of objects. The class defines
the attributes of an object that are indisputable, in other words
the basic attributes that make the object what it is. A class can
also inherit from another class and place the object in some
form of taxonomy. For example:

Both cars and motorbikes are vehicles because they inherit
from Vehicles.

Class Vehicle
Vehicle attributes

Class Car
Inherits Vehicle attributes
Has attributes specific to a car

Motor Bike
Inherits Vehicle attributes
Has attributes specific to a motorbike

Motor Vehicle Attributes:
 Moves
 Driven by engine
 Has drive shaft
 Requires fuel
 Has wheels
 Carries Passengers
 Max-Speed

Car Attributes:
 Doors
 Engine capacity
 Fuel Type
 Passenger Capacity
 License Registration
 Driver Band
 Number of wheels

Motorbike Attributes:
 Engine capacity
 Fuel type
 Passenger Capacity
 License Registration
 Driver band
 Number of wheels

Vehicles

FatHat.org

Objects: instantiating

Everytime we create a new object from a class it is said
to be instantiated (created). When an object is
instantiated it becomes an instance of that class. In
other words it is an individual object that has inherited
some attributes from the class definition, just like we
inherit some DNA from our parents but we are not our
parents. We operate on an object as an individual not
as a collective, although it shares attributes, the values
are often different.

Define our car and motorbike object classes
class Car(Vehicle):
 …
class Motorbike(Vehicle)
 …

Create an Instance of the class car and bike
Both Car and Bike are instances of Vehicle
my_car = new Car(“Toyota”, “Corolla”);
my_bike = new MotorBike(“BMW”, “F800 GS”);

Motor Vehicle Attributes:
 Moves
 Driven by engine
 Has drive shaft
 Requires fuel
 Has wheels
 Carries Passengers
 Max-Speed

Car Attributes:
 Brand = “Toyota”
 Model = “Corrola”
 Color = “red”
 Doors = 5
 Engine capacity = 1400cc
 Fuel Type = Benzine
 Passenger Capacity = 5
 License Registration = 48 12 ABC
 Driver Band = Passenger car
 Number of wheels = 4
 Max-Speed = 140
 Kilometers 25000

Motorbike Attributes:
 Brand “BMW”
 Model “F800 GS”
 Color = “blue”
 Engine capacity = 800cc
 Fuel type = Benzine
 Passenger Capacity = 2
 License Registration = 34 10 XYZ
 Driver band = Motorcycle
 Number of wheels = 2
 Max-Speed = 180
 Kilometers = 2000

FatHat.org

Objects: inheritance
When we define an object that inherits we include the ‘Parent’ class, the class it inherits from in the
definition. All of the attributes of the ‘Parent’ class will now be inherited by the new object. Below is a
simple example from Python.

PARENT CLASS

class Vehicles:

 moves = True
 driven = True
 engine = True
 engine_capacity = None
 has_drive_shaft = True
 requires_fuel = True
 has_wheels = True
 carries_passengers = True
 max_speed = 100

CHILD CLASS

class Car(Vehicles):

 def __init__(self, brand, model):
 self.brand = brand
 self.model = model
 self.number_of_wheels = 4
 selfworking = False
 super().add_vehicle('car')

As you can see, the Car class inherits from Vehicles. When we create a new Car object we pass in the car brand and
model. The __init__ is what is called an object constructor. It initialises any default attribute values for the object.
Different languages do object construction differently, but don’t worry about that, it’s the principle that is important
here.

FatHat.org

Objects: inheritance
Once a class object has inherited it is said to have a ‘Parent’. In fact, an object can have more than one ‘Parent’ via what is
called Multiple Inheritance, but we won’t go into that here.

PARENT CLASS

class Vehicles:

 moves = True
 driven = True
 engine = True
 engine_capacity = None
 has_drive_shaft = True
 requires_fuel = True
 has_wheels = True
 carries_passengers = True
 max_speed = 100

@staticmethod
def add_vehicle(vehicle_type):
 if vehicle_type == 'car':
 Vehicles.num_cars += 1
 elif vehicle_type == 'bike':
 Vehicles.num_bikes += 1

def description(self):
 desc_str = "This vehicle is a %s %s %s - color %s with a top speed of %s km an hour." %
(self.brand, self.model, self.category, self.color, self.max_speed)
 return desc_str

Beyond inheriting attributes an object can inherit and use
methods (functional blocks of code) that do stuff from the
‘Parent’ class. See the example to the left with a couple of
methods included.

These methods will be available to the ‘Child’ objects.

car1 = Car('Toyota', "Corolla")
car1.max_speed = 160
car1.color = "red"
car1.category = "saloon-car"
print(car1.description())

The print statement will display the following

“This vehicle is a Toyota Corolla saloon-car - color red with a top
speed of 160 km an hour.”

CHILD CLASS

class Car(Vehicles):

 def __init__(self, brand, model):
 self.brand = brand
 self.model = model
 self.number_of_wheels = 4
 self.working = False
 super().add_vehicle('car')

FatHat.org

Objects: Exercise
Come up with at least two different examples of objects that have shared and individual attributes. Include one level
of inheritance. Create a pseudo-code ‘Parent’ for each as well as the object itself.

Think about the attributes and how they are derived in terms of individuality or not as the case may be. Also think
about what actions or common functionality might be included for objects to apply individually or via the ‘Parent’.

Take your time and think about the details.

FatHat.org

Handling errors

FatHat.org

Handling errors
A program will not always follow the “happy path”, things may fail in different ways:

● Input/output errors
○ User enters invalid values (incorrect email address, text instead of a number)
○ Fail to write to file, filesystem errors

● Programming errors
○ Invalue values for variables (null pointer)
○ Index out of bounds errors

● External factors
○ Network connection problems, server unreachable, slow network
○ Filesystem errors, no storage left
○ Power failure

Most all languages have a way of catching errors, but the programmer has to use them. If they are not used, the
program will just crash with an error and users will be left wondering what happened. The art of dealing with
errors is to deal with them gracefully. A lot of modern languages, use the ‘Try-except’ or ‘Try-catch’ paradigms.

In programming speak, errors are more often than not called exceptions.

FatHat.org

Handling errors: Catching Errors

Try do

 message = input(“What is your message?”)

 Send message to server

 print(“Message sent”)

Catch error and do

 If error is “connection lost” Then

 Resend message to server

 Else If error is “cannot reach server” Then

 print(“Cannot reach server”)

 Stop operation

 End if

End try-catch

Try do

 x = input(“Give me a number”)

 y = input(“Give me a number”)

 z = x / y

 print(“Division result is “ + z)

Catch error and do

 If error is division by zero Then

 print(“You entered 0 for divider!”)

 End if

End try-catch

Placing code under a ‘Try’ block and if an error occurs, catching it with the ‘Catch’ block. Catching the error allows
you to understand exactly where the error occurred and what type of error it is.

FatHat.org

Some errors occur because the logic of our code is wrong. This
happens predominantly when things are rushed, i.e. code without
design… Other occur because some data is incorrect… whilst still
others occur through something that is not always within our
control. However, we can prepare for these.

The code on the right represents a conditional block of code to
send a message to an email address.

What this does is check an email address is in the correct format.
If it is it attempts to send a message. If it sends it exits the block.

If there is a network error it will try again, a maximum of 3 times.
If it sends it will exit the block and returns ‘email sent’

If it does not send after 3 attempts it will return the appropriate
message.

If the email is in an incorrect format it will return with appropriate
message.

attempts = 0

If email_address is in correct format Then
 status = send_message(message, email_address)
 While attempts < 3 and status is network error Do
 attempts = attempts + 1
 Wait 3 seconds
 status = send_message(message, email_address)
 End while
Else
 Return email address is incorrect
End If

If status is ok:
 Return email sent
Else:
 Return could not send email - Network Error

Handling errors: Catching programming errors

FatHat.org

FatHat.org

Memory MAnagement BASICS

FatHat.org

The following brief introduction to this subject is not meant to
be a deep dive into memory management, but to provide a
basic understanding of the basics and to provide you, the
reader, with a good enough level of understanding to dig deeper
without hesitation.

Managing memory is the primary responsibility of the operating
system, which allocates chunks of available memory to various
running applications. However, programming languages also
have memory management and liaise with the operating system
to acquire chunks of memory for their code and data. Different
languages do this in different ways. For example Python has an
Python Memory manager under the hood that takes care of
more or less everything to do with memory allocation and
deallocation, whilst ‘C’ and it’s variants leave a lot of memory
management to the discretion of the developer. Either way, it is
important to understand the basic memory types and what they
are used for.

Memory Management basics: A brief introduction

FatHat.org

There are several types of memory when it comes to programming languages, Code, Heap, Stack, and Cached memory.

Code
Code memory is where the instructions for your code to run are stored. As Python is an interpreter, the memory for code is
allocated when each line of code is taken from the
compiled bytecode and translated into runnable machine code.

Heap
Heap memory is a non-static, dynamically allocated memory that is resizeable and non-contiguous. Heap memory is akin to
global memory in as much as anything stored in heap is available from anywhere in your code. Everything stored in heap
memory can change, i.e. when you add, modify or remove data. For this reason heap memory can become fragmented, chunks of
related data may not be in contiguous order making access slower than it would be if they were. Heap memory may be stored in
RAM or on hard disk if RAM becomes tight with lots of applications open simultaneously. The operating system tries to maximise
the efficiency of RAM depending on what applications are running and their individual memory consumption.

Python has a private heap where it stores data structures and objects and uses a number of object-specific allocators that take
care of allocating different types of objects and data structures to memory blocks. For example, an allocator for taking care of
integers and another for dictionaries and lists etc. All these allocators are managed via the Python Memory Manager, and unlike
when using a language like 'C', Python developers have no control over where data is stored and how much memory is allocated.
‘C’ on the other hand allows developers to get their hands dirty offering far greater control of how memory is allocated and
deallocated.

Memory Management: Memory types

FatHat.org

Stack
Unlike heap memory, stack memory is both static and linear and used to store local data as the code is
running, such as functions local variables. Anything stored on the stack is fixed in size and cannot be changed.

Stack memory cannot be reallocated and has a LIFO (last-in first out) paradigm. Imagine stacking some books
on top of each other. When unstacking the books the last one stacked is removed first, freeing up space. That
is how stack memory is managed.

Frequently, references to functions and procedure calls and local variables are stored on the stack. Once a
function returns control, i.e. finishes processing, that stack memory is released from the stack. This ensures
that the stack memory does not get bloated.

Cache
Cache memory is fast access memory that generally lives in RAM. RAM is extremely fast compared to disk
memory. Frequently used data is often stored in cache memory. How much data stored in cache depends on
the size of the RAM on any individual computer. Most applications try to take advantage of cache memory as
much as possible, but it's the operating system that will manage the allocation of cache distribution amongst
applications. A number of databases use cache for storing data, and automatically load data from files on disk
into cache. This is particularly relevant for a lot of NOSQL databases.

Once an application is terminated and or a computer shutdown, anything in cache, unless saved to disk, is
permanently lost. You cannot recover data from cache memory as you can
from disk files.

Memory Management: Memory types

FatHat.org

How programs are executed (run)

FatHat.org

Depending on the language used, the code you write follows different paths to executable form. Executable form is the
form of the code that can be executed by the computer, i.e. machine code. You can’t just write code in a text-file and tell
it to run on its own. It requires an interpreter or a compiler.

A compiler does what it says on the tin, it compiles the source code either directly to machine code or byte-code which is
then run by a program, which in turn will execute the compiled code step by step. Byte-code is a low level set of
instructions that can be run by a program which executes those instructions, turning them into machine code.

An interpreter, takes code and interprets that code using a virtual machine (a program that can understand the source
code, i.e. interpret it into a form of machine code to get it to execute. It does this one line at a time.

Sometimes code, i.e. Python code, is first compiled into byte-code and then interpreted by a python virtual machine.

Compilers store the machine code whereas Interpreters do not, it’s run and forgotten. In the early stages of the IT
revolution the distinction between Compilers and Interpreters was clear. Today there is an array of approaches that
have to be understood individually, depending on the language in use.

Executable code: how

Interpreted

Compiled to native

Compiled to byte-code

JIT compiled

Source code translated to native
(machine) code

Source code executed by an interpreter
program

Frequently-executed code
translated to native (machine) code

Source code translated to
byte-code, executed by a program

FatHat.org

Source code

Native code

Compiler
(Preprocessor/

Translator)

Examples: C, C++, Rust

Linker Libraries

Executable code: Source code compiled to native (machine) code

FatHat.org

Executable code: Source Code compiled to bytecode

Source code

Byte code

Compiler

Examples: Java,
Python

Libraries

Runtime executes
byte-code

FatHat.org

Executable code:Java bytecode

public class TemperatureConverter {

 public TemperatureConverter() {

 }

 public double convertToFahrenheit(double celcius) {

 double result = celcius;

 result = result * 9;

 result = result / 5;

 result = result + 32;

 return result;

 }

}

javac

public class TemperatureConverter {
 public TemperatureConverter();
 Code:
 0: aload_0
 1: invokespecial #1 // Method
java/lang/Object."<init>":()V
 4: return

 public double convertToFahrenheit(double);
 Code:
 0: dload_1
 1: dstore_3
 2: dload_3
 3: ldc2_w #7 // double 9.0d
 6: dmul
 7: dstore_3
 8: dload_3
 9: ldc2_w #9 // double 5.0d
 12: ddiv
 13: dstore_3
 14: dload_3
 15: ldc2_w #11 // double 32.0d
 18: dadd
 19: dstore_3
 20: dload_3
 21: dreturn
}

FatHat.org

Executable code: Source code interpreted at runtime

Source code

Interpreter

Examples: Python, Bash (shell)

Libraries

FatHat.org

Executable code: Frequently-Executed code compiled to native code at runtime

Source code

Executable code
(HOT code)

Interpreter or runtime

JIT compiler

FatHat.org

Conclusion
We have learnt a lot about programming languages, their common constructs, and how they work.

The information given, really only touches the surface. Today there are so many programming languages out there, to understand
them is a continuous process of learning.

If indeed you do pursue a career in software development, you will over time become more and more knowledgeable.

Good Luck!

